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We are presented with choices each day about how to invest our
effort to achieve our goals. Critically, these decisions must
frequently be made under conditions of incomplete information,
where either the effort required or possible reward to be gained is
uncertain. Such choices therefore require the development of
potential value estimates to guide effortful goal-directed behav-
ior. To date, however, the neural mechanisms for this expectation
process are unknown. Here, we used computational fMRI during
an effort-based decision-making task where trial-wise information
about effort costs and reward magnitudes was presented sepa-
rately over time, thereby allowing us to model distinct effort/
reward computations as choice-relevant information unfolded. We
found that ventromedial prefrontal cortex (vmPFC) encoded
expected subjective value. Further, activity in dorsal anterior
cingulate (dACC) and anterior insula (aI) reflected both effort
discounting as well as a subjective value prediction error signal
derived from trial history. While prior studies have identified these
regions as being involved in effort-based decision making, these
data demonstrate their specific role in the formation and mainte-
nance of subjective value estimates as relevant information becomes
available.

prediction error | effort-based decision making | anterior insula |
dorsal anterior cingulate | ventromedial prefrontal cortex

Weighing the benefits of potential rewards against the effort
required to achieve them underlies successful decision-

making and foraging behavior (1–4). Such choices are often
made without complete access to information regarding either
the expected reward or required effort; one might accept an
invitation to a party without knowing the travel required or
choose to take a course without being certain how good the
professor or material will be. Incomplete access to choice-
relevant information presents a major challenge to the process
of cost/benefit valuation. Indeed, while a number of prior studies
have begun to outline the circuitry underlying the evaluation of
cost/benefit options under conditions of complete information
(4–6), the neural mechanisms of valuation under incomplete
information remain unclear.
When effort and reward information are presented simulta-

neously, they have generally been found to engage a network
composed of dorsal anterior cingulate (dACC) and anterior
insula (aI). Both dACC and aI have been implicated in effort-
based decision making and have been shown to encode effort
costs as well as the subjective value of decision options. Lesions
to the rodent homolog of dACC [particularly cingulate (cg) 1/2]
have routinely been found to induce a shift in preference away
from larger rewards requiring greater effort in favor of lower
effort options (7–11), with similar effects observed from dACC
lesions in primates (7, 12, 13). Electrophysiological recordings
of single-cell activity have also found dACC to be one of the
only prefrontal areas to be sensitive to effort costs (14–18).
Similarly, in tasks requiring physical effort, aI has been shown

to coactivate with dACC as effort costs increase, possibly sug-
gesting a primary role for aI in encoding effort-related costs
(19–22). Finally, both animal and neuroimaging studies have
demonstrated that subjective values are represented in distinct
brain areas, including the dACC and aI cortices for physical effort
(12, 20).
Interestingly, while substantial evidence suggests that the

ventromedial prefrontal cortex (vmPFC) is a central node for the
computation of subjective value during decision making (3, 23),
prior human and animal research has suggested that when it
comes to decisions about effort expenditure, subjective value is
not computed in vmPFC, but rather in dACC and aI (24–27).
This pattern of results has frequently been interpreted as sug-
gesting that the computation of subjective value depends on the
category of response cost (e.g., effort vs. delay or risk) and that
effort-related decisions are unique from other forms of value-
based decision making in terms of their functional anatomy.
Importantly, however, the precise nature of the computations

performed by this network of regions has not been adequately
addressed. Moreover, the extent to which the cost/benefit de-
cision making presented under conditions of complete informa-
tion generalizes to conditions where all choice-relevant information
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may not be fully available is unclear. This question is particularly
relevant, given the specific brain areas previously implicated in ef-
fortful goal-directed behavior. Both the dACC and aI are among
the most commonly activated brain areas across cognitive and
decision-making tasks, leading to numerous theoretical accounts
regarding the presence of one or more “domain general” functions.
In the case of dACC, these proposals have included error detection
(28), prediction error-driven reinforcement learning (29–31), con-
flict monitoring (32), and value-based decision making (33–35). In
the context of the latter, the dACC signal appears to be inversely
related to the subjective value of a given option. This has been
proposed to represent an increase in the “foraging value” (i.e.,
the value of continuing to search for other rewards) (36), provide
a “boosting signal” to overcome increasing response costs asso-
ciated with lower subjective values (37), or reflect the difficulty
of determining the best choice between two nearly equivalent
options (38–41). Similarly, the precise role of the aI in effort-
related decisions remains unclear. Like dACC, the aI is asso-
ciated with a variety of functions, including interoceptive
awareness (42); encoding negative prediction errors (43), partic-
ularly interoceptive prediction errors (44–46); financial risk (47);
and processing pain (48). Consequently, it remains unclear what
specific computations, such as effort cost encoding or updating,
these regions perform in the context of effort-based decisions.
As noted above, one challenge to evaluating the role of these

regions’ computations during effortful goal-directed behavior
has been the use of task paradigms that provide information
about costs and reward simultaneously. To better isolate the role
for these regions in computations of effort cost, subjective value,
choice difficulty, and prediction error signaling, we used a se-
quential effort-based decision-making task where trial-wise infor-
mation about effort costs and reward was presented separately
through time. This temporal manipulation served to decouple
reward and effort, allowing for the isolation of neural signals related
to each, while also providing greater ecological validity. Further,
this task provided a unique opportunity to measure neural re-
sponses to the receipt of favorable or unfavorable information
across different time points, allowing for the modeling of expec-
tations and expectation violations. Using this task, we found that
vmPFC encoded expected subjective value before complete in-
formation was available. We also revealed a role for dACC in
subjective value discounting and prediction error signaling across
all modeled computations, with the exception of effort cost
encoding. Interestingly, we observed the strongest role for aI as
part of a network for subjective value prediction error (SVPE)
signaling. These data help elucidate multiple distinct computations
performed by vmPFC and dACC during effort-based decision
making, as well as evidence for the recruitment of aI to aid in
prediction and prediction error encoding.

Results
Behavioral Results. In this task, participants performed choices
between options with varying rewards and physical effort (rapid
button pressing). Participants decided whether to choose a “No
Effort Option” for $1.00 or an “Effort Option” requiring some
level of physical effort in exchange for monetary rewards of
varying magnitude. The Effort Option independently varied in
the required button press rate (effort) and reward magnitude.
The reward magnitude was shown as a dollar amount (range: $1–
$5.73; based on four bins: $1.25–$2.39, $2.40–$3.49, $3.50–$4.60,
and >$4.60), and the required effort level was indicated by the
height of a vertical bar (20%, 50%, 80%, or 100% of the par-
ticipant’s maximum button-pressing rate). To examine neural
correlates of effort and reward information separately, in-
formation about the effort and reward available for the Effort
Option for each trial was presented sequentially. “Effort First”
trials began with an initial presentation of effort required for the
Effort Option, followed by the available reward, while “Reward

First” trials had the opposite presentation order. Each trial was
therefore composed of an initial cue (“Cue 1”), followed by a
second cue (“Cue 2”), which was then followed by a prompt to
decide between the Effort Option and the No Effort Option
(“Decision Prompt”), at which point subjects made a button
press indicating their selection (“Choice Phase”) (Fig. 1A).
We first tested whether both the size of the reward and the re-

quired effort of each choice option had an impact on participants’
choice behavior. A 4 (effort level) × 4 (reward magnitude, binned)
repeated-measures ANOVA revealed that participants’ choices
were strongly guided by both the required effort [F(1.45,39.10) =
64.27, P = 1.74 × 10−11, partial η2 = 0.70; Fig. 1B] as well as the
reward magnitude of the Effort Option [F(2.02,54.47) = 106.03, P =
1.42 × 10−19, partial η2 = 0.80; Fig. 1B]. There was also an effort ×
reward interaction [F(4.40,118.76) = 8.88, P = 0.000001, partial η2 =
0.25]. As expected, larger rewards and smaller effort costs attracted
more effortful choices. Overall, participants chose the higher effort
option on 66% ± 18% of trials.

Computational model. To better estimate how effort and reward
influenced individuals’ choices, we used a two-parameter effort
discounting model that had been previously shown to fit effort-
based choices (49) (details are provided in Materials and Meth-
ods). Consistent with prior results, this model showed a superior
fit (determined by both Akaike’s Information Criteria and
Bayesian Information Criteria) compared with linear, parabolic,
and hyperbolic discounting models (SI Appendix, Table S1). In-
dividual and group average subjective value discounting curves
are shown in Fig. 1C.

Neuroimaging Results. We first sought to determine which regions
appeared to be tracking the integration of reward and effort in-
formation at Cue 2 (when the second piece of information was
presented, regardless of whether effort or reward information had
come first). Using a contrast of Cue2>Cue1, we identified a network
of regions that included the insula, dACC, supplementary motor
area, and striatum, regions commonly implicated in effort-based
choice as well as a variety of other functions (2, 19–22) (Fig. 2A).
Effort cost not encoded by any brain region. To determine which, if
any, of these regions might encode a specific “effort cost” signal,
we next examined a parametric regressor contrast of presented
effort requirements at Cue 1 (i.e., without any reward in-
formation). If dACC or AI is involved in primarily effort cost
encoding, one would expect to see increased activation in these
regions in response to increasing effort costs at Cue 1. Contrary to
this hypothesis, we did not identify any significant clusters in any
brain area, even at a liberal threshold of P < 0.05 (uncorrected).
Subjective value encoding in dACC and vmPFC. While the analysis
above suggested that dACC and aI were not involved in the
objective encoding of effort costs, it does not rule out a possible
contribution to subjective value (based on reward to be gained).
To address this question, a parametric contrast reflecting model-
derived subjective value estimates for the chosen option [general
linear model 2 (GLM2)] was examined. Consistent with multiple
prior studies of subjective value (33, 35), we found that the
subjective value of the chosen option was positively associated
with activity in vmPFC [x = 4, y = 32, z = −8, t = 5.02, cluster-
corrected to control for family-wise error rate (pFWE) < 0.001;
Fig. 2C] and negatively associated with activity in the dACC
(x = −8, y = 20, z = 42, t = 4.69, cluster corrected pFWE = 0.001;
Fig. 2B). Peak activations were located in the most ventral por-
tion of Brodmann area (BA) 32, with cluster activation extending
into BA12. In dACC, peak activation was located in dorsal
BA32, with cluster activation extending into BA24. We did not
identify any activation clusters in the ventral striatum (VS), even
at lenient statistical thresholds (P < 0.05, uncorrected).
“Reversal of fortune” trials. To better differentiate subjective value
encoding from possible expectations that might have formed in
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response to Cue 1 information alone, trials from GLM1 were
divided into bins based on whether the likely subjective value
based on only Cue 1 information remained the same or changed
based on the information provided at Cue 2 (e.g., the value of a
trial beginning with a very high reward at Cue 1 might become
significantly less attractive if high effort was required at Cue 2—a
reversal of fortune). We examined trials that began with either
high reward (reward bin 4) at Cue 1 followed by low (20–50%) or
high (80–100%) effort at Cue 2 and trials that began with high
effort followed by either reward values in upper half (“high re-
ward trials”) or lower half of reward values (“low reward trials”).
Time courses were extracted for both trial types within a func-
tionally defined aI region of interest (ROI; defined by orthogo-
nal contrast: Cue 2 > Cue 1). Greater insular activity was
observed during presentation of high effort following pre-
sentation of high reward (Fig. 3A). However, this activity was not
observed during presentation of high effort at Cue 1 (Fig. 3B),
indicating that this region indeed does not encode a pure effort
cost signal. Instead, it appears that this region may be tracking
the formation of an expectation or expectation violation, given
its involvement in trial types where the information at Cue
2 conflicts with Cue 1 information.
SVPE encoded by aI, dACC, and dorsomedial caudate. Given that the
reversal of fortune trials suggested that aI may track a type of
prediction error in the task, we next sought to test this hypothesis
more directly. Due to the involvement of both dACC and insula
in error-driven reinforcement learning, as well as in both signed

and unsigned prediction signals (29–31), we modeled trial-based
predictions and computed expectation differentials using a slid-
ing window analysis (GLM3). For example, when subjects saw a
large reward value at Cue 1, they would likely expect a high
subjective value for the trial as a whole, given the subjective
value of past trials with a large reward. However, they could be
“surprised” by a high-effort requirement presented at Cue 2,
resulting in a negative SVPE. We calculated unsigned prediction
errors based on the absolute value of the difference between the
observed subjective value and the predicted subjective value
based on Cue 1 information. Using a parametric contrast of trial-
wise SVPE, we observed a positive association between magni-
tude of error and dACC (x = 8, y = 24, z = 32, t = 4.52, cluster-
corrected pFWE < 0.001), dorsomedial caudate (x = 12, y = 2,
z = 12, t = 4.18, cluster-corrected pFWE = 0.006), and aI (x =
−36, y = 16, z = −10, t = 6.26, cluster-corrected pFWE < 0.001)
activity, suggesting a role for these regions in the encoding of
unsigned prediction error signals during effort-based choice (Fig.
4D). For dACC, peak activation was located in dorsal BA32,
with cluster activation extending into BA24. Importantly, these
results remained even when controlling for regressors related
to choice difficulty, subjective value, and choice outcome (Ef-
fort Option or No Effort Option), suggesting that the in-
volvement of these regions could not be better explained by
these other processes. Further, our SVPE regressor was not
highly correlated with any of our other variables of interest
for any participants (SI Appendix, Fig. S2 A and B). A complete

A

C

B

Fig. 1. (A) Schematic of experimental task design. This image shows the time line of a trial in which effort and reward information is presented sequentially.
This is an example of an Effort First trial. Each trial began with the presentation of a fixation cross, followed by the Cue 1 phase in which one piece of in-
formation was presented (either effort level or reward magnitude). After 2–6 s, the second piece of information was presented (Cue 2). After an additional
2–6 s, participants saw a Decision Prompt that prompted them to make a choice between the Effort Option presented and the No Effort Option that always
paid $1.00. They were required to make their selection within 3 s. Following their selection, their choice was presented to them during the Choice Phase.
(B) Proportion of effortful choices based upon effort level and reward magnitude. Participants chose more effortful options as reward increased and as effort
decreased. Error bars are all SEM. (C) Individual and group average (dark blue) subjective value curves based on the results of our computational model. The
group average is shown as the dark blue line with shading around it that represents the SE. The remaining colored lines each reflect a single participant,
demonstrating individual differences in discounting.
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list of fMRI whole-brain blood oxygen-level dependent (BOLD)
amplitude results is provided in SI Appendix, Table S3.
To better understand the functional specificity of SVPE and

subjective value signals across regions, we defined ROIs using
previously defined parcellations of dACC, insula, and caudate
(50–52) to compare activity in distinct subregions of these
structures. Within dACC, we identified an anterior/posterior
spatial gradient in the encoding of unsigned prediction error
signals, where more anterior subregions of dACC encoded this
signal more strongly at a trend level (t = 1.81, P = 0.081; Fig.
4D). We also observed that dorsal insula more strongly encoded
prediction error than ventral or posterior insula, suggesting
spatial specificity for this function (t = 2.70, P = 0.012; Fig. 4B).
Similarly, within the caudate, we observed an anterior/posterior
spatial gradient, where posterior subregions of caudate encoded
the SVPE signal more strongly (t = 2.21, P = 0.037; Fig. 4F).
Interestingly, this posterior location has been found to encode
more executive functions as opposed to an action or stimulus
value (52), which may explain why it is more active for evaluation
of expectation differences.
Finally, using a binned trial analysis (GLMS2) (SI Appendix),

we sought to compare this SVPE signal as a function of choice.

Results of this analysis demonstrated a linear relationship be-
tween SVPE and dACC, caudate, and aI. This analysis also
helped us understand if this linear relationship held across
chosen and unchosen options. We observed the greatest BOLD
activity in dACC for trials with the highest SVPE, which also
exhibited significant overlap with the trials where participants
chose the noneffortful option. In this way, we see that dACC
tracks linearly with unsigned prediction error independently of
choice. However, these results were also consistent with past
findings suggesting that dACC may be implicated in signaling a
shift away from a “default” preference (53).
vmPFC encodes expected subjective value. We also sought to identify
whether any regions encoded an expected subjective value at Cue
1 (before Cue 2 presentation). Using the same sliding window
analysis, we generated an expected subjective value regressor that
was used in a parametric contrast at Cue 1. Trials that began with
either reward or effort information were modeled separately.
While we did not observe any regions that tracked expected sub-
jective value at Cue 1 when effort information was presented first,
we did observe that expected subjective value at Cue 1 was posi-
tively associated with vmPFC activity when reward information
was presented first (x = 2, y = 48, z = −8, t = 6.27, cluster-corrected

A

B

C

Fig. 2. (A) Increased BOLD signal in dACC, putamen, insula, and supplementary motor area at Cue 2. (B) Increased BOLD signal in dACC in response to
decreasing subjective value. The effect size plot demonstrates the negative relationship between BOLD activity and subjective value magnitude in dACC. (C)
Increased BOLD signal in vmPFC in response to subjective value magnitude. The effect size plot demonstrates the positive relationship between BOLD activity
and subjective value magnitude in vmPFC.
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pFWE < 0.001; Fig. 5), highlighting this region as engaged in
forming reward-based predictions. For this vmPFC cluster, peak
activation was located in dorsal BA32, with cluster activation
extending into BA12 and BA10. Consistent with the idea that this
activity reflected expectations rather than simply encoding the
objective information presented at Cue 1 (i.e., reward magnitude,
effort level), we did not identify any regions that significantly
responded to the reward magnitude or effort cost of the presented
option alone, even at lenient statistical thresholds (P < 0.05,
uncorrected).

Discussion
The goal of the current study was to investigate areas involved in
the encoding of effort, reward, and their integration over time as
choice-relevant information became available. Prior studies of
effort-based decision making have found that dACC and aI may
play an important role in the evaluation of effort-related deci-
sions but that the vmPFC does not. In contrast, we observed a
clear role for vmPFC in encoding an expected reward based on
the exertion of effort. Additionally, we found evidence to suggest
that engagement of dACC and aI during effort-based decision
making may be driven by expectation formation and strategy
updating rather than effort cost encoding per se.
Early imaging studies found that dACC activity, particularly in

BA24, increased with increasing effort requirements, which was
interpreted as an evaluation of effort costs (20, 24). This in-
terpretation was further buttressed by animal lesion studies
showing that damage to the rodent cg1/2 led to a marked shift in
effort-related preferences (11, 54). [While the precise homolog
of dACC across rodents and humans is debated, a number of
authors have proposed cg1/2 as a likely candidate based on

cytoarchitecture and connectivity studies (55).] The present
study did not observe evidence that dACC encoded effort costs.
Even when looking at presented effort costs in isolation (i.e., Cue
1) we did not find evidence that the dACC (or any region)
encoded effort cost alone. Rather, we observed dACC in-
volvement in two processes; the first was the generation of an
unsigned prediction error as choice-relevant information became
available. Our model for SVPE, the absolute value of the dif-
ference between the subjective value of the chosen option and
the predicted subjective value, is formally similar to a standard
unsigned prediction error. While both signed and unsigned
prediction error signals have previously been identified in dACC
in a reinforcement-learning context (29–31), the current result
extends this effect to cost/benefit decision making. Intriguingly,
we found that this effect was strongest when individuals made a
no-effort choice, indicating that this SVPE may reach a threshold
that signals a shift in strategy, as has been shown in monkeys
(56). We also found evidence that lower subjective value was
associated with elevated dACC activity, which is consistent with
prior reports (36, 57). A potential caveat to the inverse associ-
ation between dACC and subjective value is the possibility that
effortful options with lower subjective values represented a more
difficult choice (a more thorough description of the choice dif-
ficulty analysis is provided in SI Appendix). Importantly, however,
our main prediction error finding remained when controlling for
either subjective value or choice difficulty.
In addition to dACC, we observed that aI and dorsomedial

caudate exhibited robust responses to the SVPE. This observa-
tion is consistent with the proposed role of the insula as a hub of
interoceptive processing (42), where it may be engaged in the
regulation of internal states via both homeostatic and allostatic

A

B

Fig. 3. (A) Increased percent signal change (PSC) in aI to high-effort information at Cue 2 when presented following high reward at Cue 1 compared with low
effort. (B) No observable PSC response to high effort when presented at Cue 1 regardless of reward level presented at Cue 2.
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mechanisms. Given that our task required representations of
physical effort expenditure, a prominent role for the insula in
this valuation process would be expected. Importantly, however,
we found that activity in dorsal aI was more strongly associated
with prediction error than subjective value (Fig. 4A), suggesting a
primary role for prediction (i.e., “interoceptive inference”),
rather than just effort evaluation (45, 46). A similar role for aI
has also been observed in a study where individuals had to learn

the value of stimuli in terms of their rewards and associated
effort costs (58). Unlike this prior study, however, our task was
not an explicit learning task, as the value of the current trial was
not contingent on outcomes of prior trials. Nevertheless, we ob-
served evidence for robust prediction error signals in dACC and aI,
which suggests that putative value signals observed during effort-
based decision-making tasks may partially reflect comparisons
between the current trial and trial history.

A

C

E

F

D

B

Fig. 4. (A) Increased BOLD activity in bilateral aI in response to unsigned SVPE generation. The effect size plot demonstrates this positive relationship
between BOLD signal and SVPE. (B) BOLD activity in insula is significantly greater in response to SVPE than to subjective value. Further, within prediction error,
dorsal insula activity is significantly stronger than ventral insula activity. (C) Increased BOLD activity in dACC in response to unsigned SVPE. The effect size plot
demonstrates this positive relationship between BOLD signal and prediction error encoding. (D) BOLD activity in anterior dACC is significantly stronger than in
posterior dACC for subjective value. In posterior dACC, greater BOLD activity was observed in response to SVPE than to subjective value alone. (E) Increased
BOLD activity in caudate in response to unsigned SVPE. The effect size plot demonstrates this positive relationship between BOLD signal and prediction error
encoding. (F) BOLD activity in caudate is significantly greater in response to SVPE than to subjective value. Further, posterior caudate is more active than
anterior caudate for prediction error encoding. *P < 0.05; **P < 0.005; ***P < 0.001.
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Our study also identified a clear role for vmPFC in the context
of effort-related decisions. This area spanned BA32 and BA10,
which is homologous to areas 25, subgenual 32, and 14 in
monkeys and infralimbic cortex in the rodent (55, 59). A large
number of studies have demonstrated that vmPFC signal scales
with expected reward value across a range of reward types (33,
60, 61). In the context of effort discounting, however, there has
been some evidence suggesting a dissociation between vmPFC
and dACC. Animal research has shown that ACC lesions in rats
impaired effort discounting, whereas orbitofrontal cortical le-
sions only influenced delay discounting (62). These findings had
been interpreted to suggest that vmPFC was not involved in
effort-based decisions. In contrast, we observed that this region
was strongly engaged by the expected reward to be gained in
exchange for possible effort. This is consistent with results from a
prior fMRI study of effort-based decision making, which found
greater vmPFC activity in individuals who weighted reward in-
formation more heavily than effort information when selecting
among various options (26). Consequently, this analysis sug-
gested a role for vmPFC in the estimation of the likely subjective
value of the Effortful Option based soley on the reward amount
presented at Cue 1, an effect consistent with this well-established
role in the integration of expected value information (23, 63).
Finally, we also observed engagement of the striatum in cost/

benefit integration and SVPE signaling. The putamen was
strongly engaged during integration of both effort and reward
information for all trials at Cue 2, and we further observed ac-
tivation of dorsomedial caudate as well as the substantia nigra
and ventral tegmenal area (SN/VTA) in SVPE signaling. The
dorsal striatum has been shown to play a role in negative pre-
diction error encoding, specifically suggested to be involved in
choosing between loss-predicting cues so as to avoid the worst
outcome (43). In this way, the caudate might use prediction er-
rors to prepare for action to help select the most rewarding
outcome Further, involvement of the SN/VTA in prediction er-
ror signaling is consistent with research implicating the dopa-
minergic midbrain in the representation of prediction errors
(64). There is growing research on the topographical organiza-
tion of the midbrain, with evidence suggesting dissociable do-
paminergic populations that project to distinct areas of the
cortex and striatum (64–66). These regions’ coactivation with
dACC and caudate might lend support for parallel mesocortical
and mesolimbic pathways that underlie prediction error encod-
ing and signaling.
Unexpectedly, we did not observe strong effects in the VS in

response to our variables of interest, including effort or reward
magnitude. This is surprising, given a number of animal studies
showing that dopamine (DA) manipulations in VS, as well as

lesions of VS, may induce profound shifts in effort-based deci-
sions (4, 67–69). While ventral striatal DA is clearly necessary for
effort-related decisions, the precise role for DA signaling during
effort-based decisions remains unclear. DA transmission oper-
ates on multiple time scales, and recent microdialysis and signal
transduction studies in animals have found that gradual changes
in striatal DA release are correlated with response output to
effort-related challenges (70, 71). It may be the case that such
slower task-related changes in ventral striatal DA are important
for effort-based decision making in humans but are not easily
detected by event-related fMRI methods. That said, other
studies using fast-scan cyclic voltammetry methods for measuring
millisecond changes in DA release have found evidence for
phasic encoding of effort discounting such that DA release in-
creased for a reward associated with low effort compared with a
reward of equal magnitude associated with greater effort (72). In
humans, this type of effort discounting (varying effort levels for
equal rewards) has also been associated with modulation of
ventral striatal BOLD signals (24, 73). In contrast, effort-based
free-choice paradigms, such as that of the current study, have
often failed to identify clear VS activity (20, 26). While this ab-
sence is not fully understood, BOLD signals in VS during effort-
based choice are likely affected not only by striatal DA but also
by incoming glutamatergic cortical signals (74), and there is a
possibility that these signals aggregate in ways that do not yield a
clear parametric response detectable by fMRI. Additionally, our
paradigm emphasized processing of effort and reward cues, but
we did not have participants complete the selected effort until
they were outside of the scanner; VS activity might be more
closely linked to action selection and/or effort performance,
which could also contribute to the absence of strong effects in
this region. Finally, effects of striatal DA on ventral striatal ac-
tivity may have been further diluted by the long trial durations
resulting from our sequential trial design.

Limitations. There are several limitations to the current study that
warrant additional comment. First, our sliding window analysis,
which underlies our key finding of these regions’ involvement in
prediction error generation, was not tailored to individual
learning rates; that is, our analysis averaged the previous five
trials, but the relative weight of more recent trials may have
fluctuated both across and within subjects. That said, a different
trial window length would be unlikely to fundamentally alter the
SVPE regressor values.
A second limitation is that our participants did not complete

effort while they were in the scanner. Instead, they completed
the effort they chose immediately following the scan. We did
present the opportunity for participants to change their responses

Fig. 5. Increased BOLD activity at Cue 1 in response to expected subjective value when reward information is presented first in vmPFC. The effect size plot
illustrates a positive relationship between BOLD signal and predicted reward magnitude.
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postscan to investigate whether fatigue associated with performing
the effort in real time might influence willingness to make effortful
choices. We observed near-identical choice patterns postscan as we
observed during the scan (Materials and Methods). While this may
have addressed the question as to whether fatigue of effort com-
pletion influences choice, we cannot be sure that the act of com-
pleting effort in real time does not change the way participants
evaluate and make decisions. This focus on effort and reward-
related cues, as opposed to actual effort performance, may have
limited our ability to detect effects in certain regions (e.g., VS) and
may have partly accounted for our failure to identify any brain
areas that appeared to selectively encode effort costs. Alterna-
tively, the lack of evidence for any single region encoding effort
costs may point to the possibility of a more distributed represen-
tation of effort in the brain (75), which is too spatially disbursed to
be adequately captured by our task design. Further, given that this
study only examined effort measured by rapid finger pressing, we
cannot be certain how these findings might generalize to other
forms of physical or cognitive effort. Finally, we note that our re-
gressors were not optimally orthogonalized for all relevant ques-
tions, particularly related to the separation of subjective value and
choice difficulty (39–41, 76). While we observed a strong unsigned
SVPE, our design was not optimized to evaluate a signed pre-
diction error signal because this regressor would be too highly
correlated with subjective value. Importantly, however, our pri-
mary results remained significant when a choice difficulty regressor
was included in the model (SI Appendix).

Conclusion. Taken together, our results have identified unique
prediction error-based functions within the context of effort-
based decision making. Going forward, these data should help
reveal the precise functions of vmPFC, dACC, and aI during
effort-based decision making, and may help clarify the mecha-
nisms underlying maladaptive decision-making behaviors that
are commonly observed in clinical populations such as patients
with major depressive disorder (27, 77, 78) and schizophrenia
(79). While we predict that these functions will generalize to
other cost domains outside of effort-based decisions, future
studies will be needed to determine the generalizability of these
computations to other forms of cost/benefit decision making
(e.g., probability, delay).

Materials and Methods
Participants. Thirty-one healthy volunteers (14 male, Mage = 20.8, SDage = 3.4;
SI Appendix, Table S2) completed a sequential effort-based decision-making
task while undergoing fMRI. All were right-handed, had normal or
corrected-to-normal vision, had no history of psychiatric or neurological
diseases, and had no structural brain abnormalities. Of these, three partici-
pants were excluded: one for excessive head movement, one for falling
asleep, and one for behavioral evidence of inadequate task performance.
This yielded datasets from 28 participants (13 male, Mage = 20.2, SDage = 2.1)
for our final analysis. No statistical tests were used to predetermine sample
sizes, but our sample size is within the standard range in the field (2, 24, 36,
39, 41, 80). All study procedures were reviewed and approved by the Emory
University Institutional Review Board, and written informed consent was
obtained from all participants.

Procedure. The experimental task was designed to independently measure
the neural responses to two dimensions of a cost/benefit decision: the effort
required and the magnitude of reward. In this task, participants decided
whether to perform a no-effort task for $1.00 or a higher effort task for a
larger reward of varying magnitude. The higher effort option independently
varied in required button press rate (effort) and reward magnitude. The
reward magnitude was shown as a dollar amount (range: $1–$5.73; based on
four bins: $1.25–$2.39, $2.40–$3.49, $3.50–$4.60, and >$4.60), and the re-
quired effort level was indicated as the height of a vertical bar (20%, 50%,
80%, or 100% of the participant’s maximum button-pressing rate). Before
entering the scanner, participants completed three practice trials where they
were asked to press a key with their left pinky finger as quickly as possible
for 20 s. A participant’s maximum effort was calculated based on the

average press rate across the three trials. After establishing each partici-
pant’s maximum button press rate, participants practiced completing 20%,
50%, 80%, and 100% of their maximum effort. As part of this practice,
participants completed four trials of each effort level to become familiar
with how effortful each value was for them. The practice trials lasted about
5 min. Participants were informed that they would not complete the physical
effort component while in the scanner but would have to complete it based
on the choices they made immediately following the scan.

Each trial was composed of Cue 1, Cue 2, Decision Prompt, and Choice
phases. At Cue 1, participants were presented with only one piece of in-
formation from the Effort Option (either the associated effort level or reward
magnitude). This first piece of information remained on the screen for a brief
jittered delay of between 2 and 6 s (mean = 2.98 s); participants then saw Cue
2, which revealed the other piece of information. After another brief jit-
tered delay of between 2 and 6 s (mean = 3.23 s), the participants were
prompted to make their selection: either accept the Effort Option that has
been presented or reject that option in favor of the No Effort Option that
pays $1. Then, the participant’s selection was shown in the Choice phase. The
interstimulus jitter was drawn from a Poisson distribution similar to that
used in sequential foraging tasks (36). Because the noneffortful option was
fixed, it was not presented during the task. Order of information (effort first
or reward first), as well as side of presentation for effort and reward in-
formation (right or left), was counterbalanced across trials (Fig. 1A). Trials
were presented in the same fixed, randomized order for all participants.

While in the scanner, participants completed a total of two runs of this
task. Each run lasted ∼9 min and consisted of 44 trials (11 trials per effort
level and reward bin values). Stimulus presentation and response acquisition
were performed using MATLAB R2013b (MathWorks) with the Psychophysics
Toolbox (81). Participants responded with MRI-compatible response key-
pads. Participants did not complete effortful button pressing during the scan
to reduce motion, as well as over the length of the scan to reduce overall
task-length fatigue.

Following the scan, participants were presented with the Effort Options
they selected while in the scanner. They were then asked to complete the
effort required for the choices they had selected. Importantly, for each
chosen trial, they were given the opportunity to change their responses. This
option was given to investigate whether the fatigue of performing the effort
in real time might influence a participant’s willingness to make effortful
choices. We observed choice patterns postscan very consistent with those we
observed during the scan, with participants choosing the same options on
97 ± 4% of trials.

Image Acquisition. Imaging datawere acquired on a Siemens 3T Tim Trio using
a 32-channel, phased-array head coil. Trial presentations were synchronized
to initial volume acquisition. Functional (T2*-weighted) images were ac-
quired using a multiband sequence with the following sequence parameters:
3-mm3 isotropic voxels, repetition time (TR) = 1.0 s, echo time (TE) = 30 ms,
flip angle (FA) = 65°, 52 interleaved axial slices, with slice orientation tilted
18° relative to the anterior commissure/posterior commissure plane to im-
prove coverage of vmPFC. At the start of the imaging session, a high-
resolution structural volume was also collected with the following se-
quence parameters: 2-mm × 1-mm × 1-mm voxels, TR = 1.9 s, TE = 2.27 ms,
FA = 9°.

Behavioral Analysis. Analyses were conducted using MATLAB 2015B (Math-
Works) and SPSS v22 (IBM). To examine choice data across varying levels of
effort and reward magnitude, repeated-measures ANOVAs were used. For
cases that violated the sphericity assumption, a Greenhouse–Geisser cor-
rection was used.
Subjective value models. To estimate participants’ subjective values for the
offers presented on each trial, we used a two-parameter power function,
which has been previously described (49). This effort-discounting model has
been shown to provide better fits than the hyperbolic model previously
suggested for effort discounting (20) both here and in other studies (49). The
two-parameter power function estimates subjective values on each trial
using Eq. 1, where SV is the subjective value, E is the amount of required
effort [0.2, 0.5, 0.8, 1], R is the reward magnitude, and k and p are free
parameters that are fit for each participant:

SV =R− kEp. [1]

The subjective value of the No Effort Option, which does not require any
effort to be exerted and was always worth $1, assumes a value of 1 on each
trial. Importantly, the p parameter allows the two-parameter power func-
tion to take a concave or convex shape depending on the rate at which the
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participant devalues reward with additional effort. Hyperbolic discounting
functions that have been traditionally used for delay discounting and pre-
viously suggested for effort discounting follow a convex function, where the
addition of effort has a larger devaluation effect on smaller effort costs and
very small devaluation effects at higher levels of effort. Alternatively, recent
work has suggested that it is both intuitive and biologically plausible for
effort discounting to instead take a concave shape, where additional effort
has small effects on subjective value at lower levels of required effort but
increases steeply as effort reaches more demanding levels (49). To verify that
the two-parameter power function provided a better fit for our data, we
compared it with discounting models that use hyperbolic, quadratic, and
linear discounting functions previously employed to describe effort dis-
counting (6, 20, 82). All models were each fit to a subject’s data individually
using the MATLAB function “fminsearch,” and parameters were selected for
each participant that optimized the likelihood of the behavioral data (a
more detailed discussion of model comparison and selection is provided in
SI Appendix).

The Softmax function (Eq. 2) was used to transform the subjective values
of the two options offered on each trial into choice probabilities for
selecting each option a on trial t. The Softmax function includes an inverse
temperature parameter, β, which is fit as an additional free parameter for
each participant for each of the discounting models. The inverse tempera-
ture parameter determines the degree to which the choice probabilities are
affected by the estimated subjective value of each option, with lower values
indicating random responding and higher values indicating a tendency to
choose the option with the highest subjective value. The fits of the dis-
counting models were also compared with a simple model that assumes a
fixed probability of choosing each option:

PtðaÞ= eβ·SVa

P2
i=1eβ·SVi

. [2]

SVPE. Estimates of expected subjective value at Cue 1 (SVpredicted) were cal-
culated using a sliding window analysis of previously experienced subjective
values of the same trial type. The value of SVpredicted on each trial was de-
rived from the Cue 1 stimulus value and recent subjective values of trials
with the same stimulus value (i.e., either reward bin or effort level; more
information is provided in SI Appendix). Subjective values for previous trials
were calculated using the two-parameter power function (Eq. 1) and each
participant’s best-fitting parameters. The SVPE regressor was calculated by

subtracting SVpredicted from SVchosen, where SVchosen is calculated under the
two-parameter power function using the pieces of information provided at
both Cue 1 and Cue 2.

fMRI Analysis. All neuroimaging data were preprocessed and analyzed in
SPM12 (Wellcome Department of Imaging Neuroscience, Institute of Neu-
rology, London). Preprocessing in SPM12 included realignment estimation
and implementation, coregistration to the individual’s high-resolution
structural scan, normalization to Montreal Neurological Institute space,
and spatial smoothing using a Gaussian kernel (6-mm FWHM). A standard
hemodynamic response function was used for all GLMs, and it was modeled
based on the duration of each cue for each trial. Across all GLMs, we used
the SPM default orthogonalization. When controlling for other regressors,
the regressor of interest was always entered second (83).

To identify areas that encoded reward or effort signals, we implemented
the first GLM (GLM1), which included eight conditions: Cue 1, Cue 2, Decision
Prompt, and choice divided by order of presentation (effort first or reward
first). The first three phases were associated with two parametric modula-
tors: the reward magnitude and effort of the chosen option.

To further investigate and identify areas that encoded subjective value as
well as the integration of effort and reward information, we implemented a
second GLM. The second GLM (GLM2) was identical to the first, except that
parametric modulators were replaced by expected subjective value at Cue 1
(calculated with a sliding window analysis) and subjective value estimates of
the chosen option at Cue 2.

Last, a third GLM (GLM3) aimed to identify areas that encoded prediction
as well as an unsigned prediction error. It was identical to the first except that
the parametric modulators were replaced by predicted subjective value as
determined by our sliding window analysis at Cue 1 as well as SVPE at Cue 2
(though SVC was not included at Cue 2 for this model).

For whole-brain analyses, we used an FWE cluster-corrected threshold of P <
0.05 (using a cluster-defining threshold of P < 0.005 and a cluster threshold
of 20 voxels). Beta values were extracted from ROIs as well as from various
defined regions of the medial prefrontal cortex (51) and insula (50).
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